National Semiconductor

LP2957/LP2957A 5V Low-Dropout Regulator for µP Applications

General Description

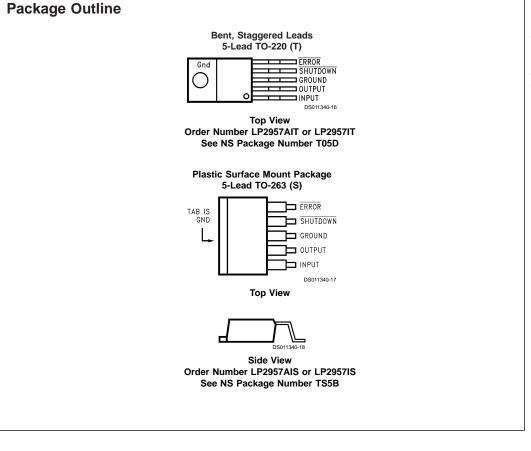
The LP2957 is a 5V micropower voltage regulator with electronic shutdown, error flag, very low quiescent current (150 μ A typical at 1 mA load), and very low dropout voltage (470 mV typical at 250 mA load current).

Output can be wired for snap-on/snap-off operation to eliminate transition voltage states where μP operation may be unpredictable.

Output crowbar (50 mA typical pull-down current) will bring down the output quickly when the regulator snaps off or when the shutdown function is activated.

The part has tight line and load regulation (0.04% typical) and low output temperature coefficient (20 ppm/°C typical).

The accuracy of the 5V output is guaranteed at room temperature and over the full operating temperature range.


The LP2957 is available in the five-lead TO-220 and TO-263 packages.

Features

- 5V output within 1.4% over temperature (A grade)
- Easily programmed for snap-on/snap-off output
- Guaranteed 250 mA output current
- Extremely low quiescent current
- Low Input-Output voltage required for regulation
- Reverse battery protection
- Extremely tight line and load regulation
- Very low temperature coefficient
- Current and thermal limiting
- Error flag signals when output is out of regulation

Applications

- High-efficiency linear regulator
- Battery-powered regulator

998

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Operating Junction

. .

Temperature Range	–40°C to +125°C
Storage Temperature Range	–65°C to +150°C

Electrical Characteristics

Lead Temperature (Soldering, 5 Seconds) Power Dissipation (Note 2) Input Supply Voltage Shutdown Input ESD Rating

260°C Internally Limited -20V to +30V -0.3V to +30V 2 kV

Limits in standard typeface are for $T_J = 25^{\circ}C$, and limits in **boldface type** apply over the full operating temperature range. Unless otherwise specified: $V_{IN} = 6V$, $I_L = 1$ mA, $C_L = 2.2 \,\mu$ F, $V_{SD} = 3V$.

Symbol	Parameter	Conditions	Typical	LP2957AI		LP2957I		Units
				Min	Max	Min	Max	Units
Vo	Output Voltage		5.0	4.975	5.025	4.950	5.050	
	(Note 9)			4.940	5.060	4.900	5.100	V
		$1 \text{ mA} \leq I_L \leq 250 \text{ mA}$	5.0	4.930	5.070	4.880	5.120	
$\frac{\Delta V_O}{\Delta T}$	Output Voltage	(Note 3)						
ΔΤ	Temperature Coefficient		20		100		150	ppm/
ΔV_O	Line Regulation	$V_{IN} = 6V \text{ to } 30V$	0.03		0.10		0.20	%
Vo					0.20		0.40	70
ΔV_O	Load Regulation	I _L = 1 mA to 250 mA			0.16		0.20	
Vo		$I_{L} = 0.1 \text{ mA to } 1 \text{ mA}$ (Note 4)	0.04		0.20		0.30	%
/ _{IN} -V _O	Dropout Voltage	I _L = 1 mA	60		100		100	m٧
	(Note 5)				150		150	
		I _L = 50 mA	240		300		300	1
					420		420	
		I _L = 100 mA	310		400		400	1
					520		520	
		I _L = 250 mA	470		600		600	1
					800		800	
I _{GND}	Ground Pin Current	I _L = 1 mA	150		200		200	μA
	(Note 6)				230		230	
		I _L = 50 mA	1.1		2		2	mA
					2.5		2.5	
		I _L = 100 mA	3		6		6	1
					8		8	
		I _L = 250 mA	16		28		28]
					33		33	
GND	Ground Pin Current	I _L = 0	130		180		180	μA
	in Shutdown (Note 6)	$V_{SD} = 0.4V$			200		200	
GND	Ground Pin Current	V _{IN} = 4.5V	180		230		230	μΑ
	at Dropout (Note 6)	$I_{L} = 0.1 \text{ mA}$			250		250	
0	Off-State Output	V _{IN} = 5.3V	50	30		30		mA
Sink)	Pulldown Current	$V_{O} = 5V, V_{SD} = 0.4V$		20		20		
c	Output Leakage	I _(SD IN) ≥1 μA	3		10		10	μA
Off)	in Shutdown	V_{IN} = 30V, V_{OUT} = 0V			20		20	
I _{LIMIT}	Current Limit	$R_L = 1\Omega$	400		500		500	mA
					530		530	
$\frac{\Delta V_O}{\Delta P d}$	Thermal Regulation	(Note 7)	0.05		0.2		0.2	%/\

Electrical	Characteristics	(Continued)
------------	-----------------	-------------

Limits in standard typeface are for $T_J = 25$ °C, and limits in **boldface type** apply over the full operating temperature range. Unless otherwise specified: $V_{IN} = 6V$, $I_L = 1$ mA, $C_L = 2.2 \mu$ F, $V_{SD} = 3V$.

Symbol	Parameter	Conditions	Turrical	LP2957AI		LP2957I		
			Typical	Min	Max	Min	Max	Units
e _n Output Noise Voltage (10 Hz to 100 kHz) I ₁ = 100 mA	Output Noise Voltage	C _L = 2.2 μF	500					
	C _L = 33 µF	320					μV RMS	
SHUTDOWN	N INPUT				•			
V _{SD} (ON)	Output Turn-On			1.155	1.305	1.155	1.305	V
	Threshold Voltage			1.140	1.320	1.140	1.320	
HYST	Hysteresis		6					mV
I _B	Input Bias	V _{IN(SD)} = 0V to 5V	10	-30	30	-30	30	nA
	Current			-50	50	-50	50	
DROPOUT	DETECTION COMPARATO	R						
I _{OH}	Output "HIGH"	V _{OH} = 30V	0.01		1		1	μA
	Leakage				2		2	
V _{OL}	Output "LOW"	$V_{IN} = 4V$	150		250		250	mV
	Voltage	I _O (COMP) = 400 μA			400		400	
V _{THR}	Upper Threshold	(Note 8)	-240	-320	-150	-320	-150	mV
(Max)	Voltage			-380	-100	-380	-100	
V _{THR}	Lower Threshold	(Note 8)	-350	-450	-230	-450	-230	mV
(Min)	Voltage			-640	-160	-640	-160	
HYST	Hysteresis	(Note 8)	60					mV

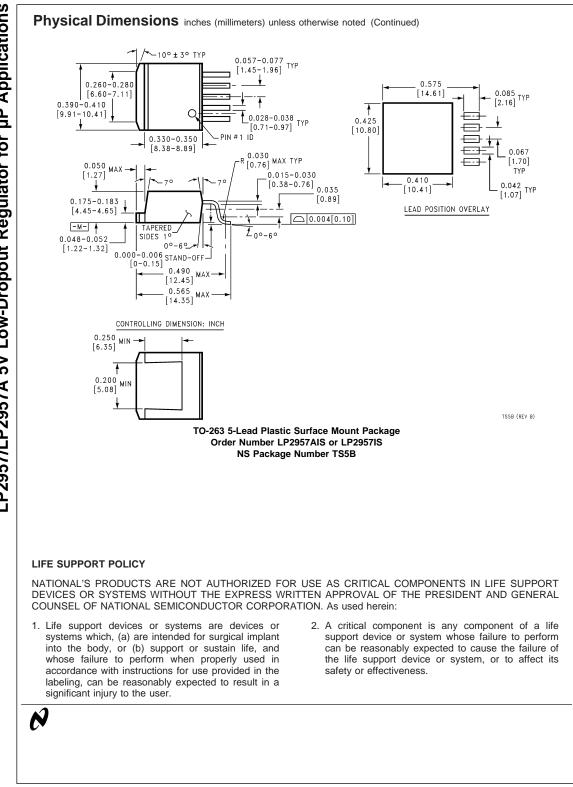
Note 1: Absolute maximum ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside of its rated operating conditions.

Note 2: The maximum allowable power dissipation is a function of the maximum junction temperature, T J(MAX), the junction-to-ambient thermal resistance, θ JA, and the ambient temperature, T_A. The maximum allowable power dissipation at any ambient temperature is calculated using:

$$P(MAX) = \frac{T_J(MAX) - T_A}{\theta_{JA}}$$

Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. The junction-to-ambient thermal resistance of the TO-220 (without heatsink) is 60°C/W and 73°C/W for the TO-263. If the TO-263 package is used, the thermal resistance can be reduced by increasing the P.C. board copper area thermally connected to the package: Using 0.5 Square inches of copper area, θ_{JA} is 50°C/W, with 1 square inch of copper area, θ_{JA} is 53°C/W, and with 1.6 or more square inches of copper area, θ_{JA} is 32°C/W. The junction-to-case thermal resistance is 3°C/W. If an external heatsink is used, the effective junction-to-ambient thermal resistance is the sum of the junction-to-case resistance (3°C/W), the specified thermal resistance of the heatsink selected, and the thermal resistance of the interface between the heatsink and the LP2957 (see Application Hints).

Note 3: Output voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.


Note 4: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested separately for load regulation in the load ranges 0.1 mA-1 mA and 1 mA-250 mA. Changes in output voltage due to heating effects are covered by the thermal regulation specification.

Note 5: Dropout voltage is defined as the input to output voltage differential at which the output voltage drops 100 mV below the value measured with a 1V input to output differential.

Note 6: Ground pin current is the regulator quiescent current. The total current drawn from the source is the sum of the load current plus the ground pin current. Note 7: Thermal regulation is defined as the change in output voltage at a time T after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 200 mA load pulse at V_{IN} = 20V (3W pulse) for T = 10 ms.

Note 8: Voltages are referenced to the nominal regulated output voltage.

Note 9: When used in dual-supply systems where the regulator load is returned to a negative supply, the output voltage must be diode-clamped to ground.

